Math 2B: Applied Linear Algebra

True/False For the problems below, circle T if the answer is true and circle F is the answer is false.

1.	Т	F	The transpose of a matrix unit is also a matrix unit.
2.	Т	F	Suppose $\mathbf{x} \in \mathbb{R}^n$ and $\mathbf{b} \in \mathbb{R}^m$ The matrix given by the outer product $\mathbf{x}\mathbf{b}^T$ is an $m \times n$ matrix.
3.	Т	F	The transpose of a square $n \times n$ shear matrix $S_{ik}(c)$ is also a shear matrix given by $S_{ki}(c) = (S_{ik}(c))^T$.
4.	Т	F	Let $\mathbf{e}_j = I_n(:,j) \in \mathbb{R}^n$ be the <i>j</i> th column of the identify matrix $I_n \in \mathbb{R}^{n \times n}$ for all $j = 1, 2,, n$. If $i, k \in [n]$ with $i \neq k$, then the shear matrix $S_{ik}(c) = I_n + c \ \mathbf{e}_i \ \mathbf{e}_k^T.$
5.	Т	F	Let $\mathbf{e}_k = I_n(:,k) \in \mathbb{R}^n$ be the <i>k</i> th column of the identify matrix $I_n \in \mathbb{R}^{n \times n}$ for all $k = 1, 2,, n$. If $j \in \{1, 2, 3,, n\}$, then the dilation matrix $D_j(c) = I_n + (c-1) \mathbf{e}_j \mathbf{e}_j^T$
6.	Т	F	For matrices in $\mathbb{R}^{4\times 4}$, $D_3(6) - D_3(5) = \mathbf{e}_3 \cdot \mathbf{e}_3^T$

Multiple Choice For the problems below, circle the correct response for each question.

1. If $A \in \mathbb{R}^{4 \times 6}$,	how many rows does	the matrix A^T have?		
A. 4	B. 6	C. 0	D. 1	E. None of these.

2. Consider the following expression:

 $\begin{bmatrix} 9 & 5 & 3 \\ 8 & 0 & 2 \\ 7 & -6 & 1 \end{bmatrix} - \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 6 \end{bmatrix} + \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix} \begin{bmatrix} -5 & 2 & 0 \end{bmatrix}$

Using the properties of matrix-matrix multiplication and matrix-matrix addition, which of the following represents the given expression:

	[9	5	3		3	5	3		9	5	-3		9	5	-3		9	5	-3
А.	8	0	2	В.	-2	4	2	С.	18	4	2	D.	-2	-4	2	E.	-2	4	2
	[7	-6	1		[7	-6	1]		[7	-6	1		[7	-6	1]		[7	-6	1]

3. Suppose that $\mathbf{e}_k \in \mathbb{R}^3$ is the 3×1 elementary basis vector with $\mathbf{e}_k = I_3(:,k)$ for k = 1, 2, 3. Let

$$A = -2 \cdot \mathbf{e}_3 \cdot \mathbf{e}_1^T + 4 \cdot \mathbf{e}_2 \cdot \mathbf{e}_2^T + 3 \cdot \mathbf{e}_3 \cdot \mathbf{e}_3^T - \mathbf{e}_1 \cdot \mathbf{e}_2^T$$

Then, which of the following gives $A(:, 2) \cdot A(1, :)$?

A. $\begin{bmatrix} 0 & 4 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ B. 4 C. 1 D. $\begin{bmatrix} 0 & -4 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ E. $\begin{bmatrix} 0 & 4 \\ 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 \\ 4 & 0 \\ 0 & 0 \end{bmatrix}$
--	---

4. Define the matrix $B \in \mathbb{R}^{3 \times 3}$ as a sum of elementary matrices given by

$$B = D_1(2) + S_{21}(2) + S_{31}(3) - S_{13}(-4).$$

Which of the following matrices is equivalent to B?

A.
$$\begin{bmatrix} 3 & 0 & 4 \\ 2 & 2 & 0 \\ 3 & 0 & 2 \end{bmatrix}$$
B. $\begin{bmatrix} 2 & 0 & 4 \\ 2 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix}$ C. $\begin{bmatrix} 2 & 0 & -4 \\ 2 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix}$ D. $\begin{bmatrix} 4 & 0 & 4 \\ 2 & 2 & 0 \\ 3 & 0 & 2 \end{bmatrix}$ E. $\begin{bmatrix} 3 & 0 & -4 \\ 2 & 2 & 0 \\ 3 & 0 & 2 \end{bmatrix}$